Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Immunol Methods ; 529: 113669, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582259

ABSTRACT

Because of their superior properties for certain biological applications small antibody derivatives like fragment of antigen binding (Fab) have found widespread use in basic research and as therapeutics. However, generation of Fab-fragments is still a rather complex matter, reflected by the fact that a variety of methods and purification techniques are necessary for the production of all the different classes of Fab-fragments (kappa/lambda light chains, type of species). Here we demonstrate that Fab-fragments derived from six different antibodies of human or murine origin produced by transient expression in HEK cells can be purified in a single step to a high degree of purity by standard protein G affinity chromatography. This is most likely due to alternative contact sites for protein G located in the CH1 domain of the Fab heavy chain. Our data demonstrate that protein G affinity chromatography as for whole antibodies is a robust method for the purification of tag-less Fab-fragments independent of species, significantly simplifying the process of Fab-fragment purification.

2.
Int J Med Microbiol ; 314: 151607, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367508

ABSTRACT

Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.


Subject(s)
Measles virus , Measles , Humans , Measles virus/genetics , Antibodies, Neutralizing , Neutralization Tests , Measles Vaccine/genetics , Measles/prevention & control , Antibodies, Viral , Epitopes/genetics , Hemagglutinins, Viral/genetics , Antibodies, Monoclonal
3.
Sci Rep ; 13(1): 21846, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071261

ABSTRACT

Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Middle East Respiratory Syndrome Coronavirus , Child , Humans , SARS-CoV-2 , Immunity, Humoral , COVID-19/diagnosis , COVID-19/epidemiology , Immunoglobulin G , Antibodies, Viral
4.
Virol J ; 20(1): 139, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37408040

ABSTRACT

BACKGROUND: Over the course of the COVID-19 pandemic, laboratories worldwide have been facing an unprecedented increase in demand for PCR testing because of the high importance of diagnostics for prevention and control of virus spread. Moreover, testing demand has been varying considerably over time, depending on the epidemiological situation, rendering efficient resource allocation difficult. Here, we present a scalable workflow which we implemented in our laboratory to increase PCR testing capacity while maintaining high flexibility regarding the number of samples to be processed. METHODS: We compared the performance of five automated extraction instruments, using dilutions of SARS-CoV-2 cell culture supernatant as well as clinical samples. To increase PCR throughput, we combined the two duplex PCR reactions of our previously published SARS-CoV-2 PCR assay into one quadruplex reaction and compared their limit of detection as well as their performance on the detection of low viral loads in clinical samples. Furthermore, we developed a sample pooling protocol with either two or four samples per pool, combined with a specifically adapted SARS-CoV-2 quadruplex PCR assay, and compared the diagnostic sensitivity of pooled testing and individual testing. RESULTS: All tested automated extraction instruments yielded comparable results regarding the subsequent sensitivity of SARS-CoV-2 detection by PCR. While the limit of detection of the quadruplex SARS-CoV-2 PCR assay (E-Gene assay: 28.7 genome equivalents (ge)/reaction, orf1ab assay: 32.0 ge/reaction) was slightly higher than that of our previously published duplex PCR assays (E-Gene assay: 9.8 ge/reaction, orf1ab assay: 6.6 ge/reaction), the rate of correctly identified positive patient samples was comparable for both assays. Sample pooling with optimized downstream quadruplex PCR showed no loss in diagnostic sensitivity compared to individual testing. CONCLUSION: Specific adaptation of PCR assays can help overcome the potential loss of sensitivity due to higher levels of PCR multiplexing or sample dilution in pooled testing. Combining these adapted PCR assays with different sample processing strategies provides a simple and highly adjustable workflow for resource-efficient SARS-CoV-2 diagnostics. The presented principles can easily be adopted in a variety of laboratory settings as well as be adapted to pathogens other than SARS-CoV-2, making it feasible for any laboratory that conducts PCR diagnostics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , COVID-19 Testing , Polymerase Chain Reaction , Sensitivity and Specificity
5.
J Am Chem Soc ; 145(18): 10220-10226, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37098770

ABSTRACT

The ability to deliver proteins and peptides across the plasma membrane into the cytosol of living mammalian cells would be highly impactful for both basic science and medicine. Natural cell-penetrating protein toxins have shown promise as protein delivery platforms, but existing approaches are limited by immunogenicity, lack of cell-type-specificity, or their multi-component nature. Here we explore inactivated botulinum neurotoxin (BoNT) as a protein delivery platform. Using split luciferase reconstitution in the cytosol as a readout for endosomal escape and cytosolic delivery, we showed that BoNT chimeras with nanobodies replacing their natural receptor binding domain can be selectively targeted to cells expressing nanobody-matched surface markers. We used chimeric BoNTs to deliver a range of cargo from 1.3 to 55 kDa in size, and demonstrated selective delivery of orthogonal cargoes to distinct cell populations within a mixed culture. These explorations suggest that BoNT may be a versatile platform for targeted protein and peptide delivery into mammalian cells.


Subject(s)
Botulinum Toxins, Type A , Animals , Botulinum Toxins, Type A/metabolism , Cytosol/metabolism , Peptides , Luciferases , Mammals/metabolism
6.
Infection ; 51(4): 1093-1102, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36913112

ABSTRACT

PURPOSE: COViK, a prospective hospital-based multicenter case-control study in Germany, aims to assess the effectiveness of COVID-19 vaccines against severe disease. Here, we report vaccine effectiveness (VE) against COVID-19-caused hospitalization and intensive care treatment during the Omicron wave. METHODS: We analyzed data from 276 cases with COVID-19 and 494 control patients recruited in 13 hospitals from 1 December 2021 to 5 September 2022. We calculated crude and confounder-adjusted VE estimates. RESULTS: 21% of cases (57/276) were not vaccinated, compared to 5% of controls (26/494; p < 0.001). Confounder-adjusted VE against COVID-19-caused hospitalization was 55.4% (95% CI: 12-78%), 81.5% (95% CI: 68-90%) and 95.6% (95%CI: 88-99%) after two, three and four vaccine doses, respectively. VE against hospitalization due to COVID-19 remained stable up to one year after three vaccine doses. CONCLUSION: Three vaccine doses remained highly effective in preventing severe disease and this protection was sustained; a fourth dose further increased protection.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Prospective Studies , Vaccine Efficacy , Germany/epidemiology
7.
FEBS Lett ; 597(4): 524-537, 2023 02.
Article in English | MEDLINE | ID: mdl-36653893

ABSTRACT

Botulinum neurotoxins (BoNTs) are among the most lethal toxins known to humans, comprising seven established serotypes termed BoNT/A-G encoded in two types of gene clusters (ha and orfX) in BoNT-producing clostridia. The ha cluster encodes four non-toxic neurotoxin-associated proteins (NAPs) that assemble with BoNTs to protect and enhance their oral toxicity. However, the structure and function of the orfX-type NAPs remain largely unknown. Here, we report the crystal structures for OrfX1, OrfX2, and an OrfX1-OrfX3 complex, which are encoded in the orfX cluster of a BoNT/E1-producing Clostridium botulinum strain associated with human foodborne botulism. These structures lay the foundation for future studies on the potential roles of OrfX proteins in oral intoxication and pathogenesis of BoNTs.


Subject(s)
Botulinum Toxins, Type A , Clostridium botulinum , Humans , Clostridium botulinum/genetics , Clostridium botulinum/chemistry , Clostridium botulinum/metabolism , Botulinum Toxins, Type A/metabolism , Multigene Family
8.
Vaccine ; 41(2): 290-293, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36509640

ABSTRACT

We included 852 patients in a prospectively recruiting multicenter matched case-control study in Germany to assess vaccine effectiveness (VE) in preventing COVID-19-associated hospitalization during the Delta-variant dominance. The two-dose VE was 89 % (95 % CI 84-93 %) overall, 79 % in patients with more than two comorbidities and 77 % in adults aged 60-75 years. A third dose increased the VE to more than 93 % in all patient-subgroups.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Case-Control Studies , COVID-19/prevention & control , Hospitalization , Hospitals , Germany/epidemiology
9.
mBio ; 13(3): e0238421, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35499308

ABSTRACT

In early life, the immature human gut microbiota is prone to colonization by pathogens that are usually outcompeted by mature microbiota in the adult gut. Colonization and neurotoxin production by a vegetative Clostridium botulinum culture in the gut of an infant can lead to flaccid paralysis, resulting in a clinical outcome known as infant botulism, a potentially life-threatening condition. Beside host factors, little is known of the ecology, colonization, and adaptation of C. botulinum to the gut environment. In our previous report, an infant with intestinal botulism was shown to be colonized by neurotoxigenic C. botulinum culture for 7 months. In an effort to gain ecological and evolutionary insights into this unusually long gut colonization by C. botulinum, we analyzed and compared the genomes of C. botulinum isolates recovered from the infant feces during the course of intoxication and isolates from the infant household dust. A number of observed mutations and genomic alterations pinpointed at phenotypic traits that may have promoted colonization and adaptation to the gut environment and to the host. These traits include motility, quorum-sensing, sporulation, and carbohydrate metabolism. We provide novel perspectives and suggest a tentative model of the pathogenesis of C. botulinum in infant botulism. IMPORTANCE While the clinical aspects of infant botulism and the mode of action of BoNT have been thoroughly investigated, little is known on the pathogenesis and adaptive mechanisms of C. botulinum in the gut. Here, we provide for the first time a comprehensive view on the genomic dynamics and plasticity of C. botulinum over time in a case of infant botulism. The genomic and phenotypic analysis of C. botulinum isolates collected during the disease course offers an unprecedented view of C. botulinum ecology, evolution, and pathogenesis and may be instrumental in developing novel strategies for prevention and treatment of toxicoinfectious botulism.


Subject(s)
Botulism , Clostridium botulinum , Gastrointestinal Microbiome , Botulism/etiology , Clostridium botulinum/genetics , Feces , Genomics , Humans , Infant
10.
Antibodies (Basel) ; 11(2)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35466280

ABSTRACT

During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 °C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context.

11.
Sci Rep ; 12(1): 1790, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110559

ABSTRACT

Botulinum neurotoxins (BoNTs), produced by the spore-forming bacterium Clostridium botulinum, cause botulism, a rare but fatal illness affecting humans and animals. Despite causing a life-threatening disease, BoNT is a multipurpose therapeutic. Nevertheless, as the most potent natural toxin, BoNT is classified as a Select Agent in the US, placing C. botulinum research under stringent governmental regulations. The extreme toxicity of BoNT, its impact on public safety, and its diverse therapeutic applications urge to devise safe solutions to expand C. botulinum research. Accordingly, we exploited CRISPR/Cas9-mediated genome editing to introduce inactivating point mutations into chromosomal bont/e gene of C. botulinum Beluga E. The resulting Beluga Ei strain displays unchanged physiology and produces inactive BoNT (BoNT/Ei) recognized in serological assays, but lacking biological activity detectable ex- and in vivo. Neither native single-chain, nor trypsinized di-chain form of BoNT/Ei show in vivo toxicity, even if isolated from Beluga Ei sub-cultured for 25 generations. Beluga Ei strain constitutes a safe alternative for the BoNT research necessary for public health risk management, the development of food preservation strategies, understanding toxinogenesis, and for structural BoNT studies. The example of Beluga Ei generation serves as template for future development of C. botulinum producing different inactive BoNT serotypes.


Subject(s)
Botulinum Toxins/biosynthesis , CRISPR-Cas Systems , Clostridium botulinum/metabolism , Gene Editing , Botulinum Toxins/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Clostridium botulinum/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Genotype , Phenotype , Point Mutation
12.
NPJ Vaccines ; 6(1): 156, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930909

ABSTRACT

New generation plasmid DNA vaccines may be a safe, fast and simple emergency vaccine platform for preparedness against emerging viral pathogens. Applying platform optimization strategies, we tested the pre-clinical immunogenicity and protective effect of a candidate DNA plasmid vaccine specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The DNA vaccine induced spike-specific binding IgG and neutralizing antibodies in mice, rabbits, and rhesus macaques together with robust Th1 dominant cellular responses in small animals. Intradermal and intramuscular needle-free administration of the DNA vaccine yielded comparable immune responses. In a vaccination-challenge study of rhesus macaques, the vaccine demonstrated protection from viral replication in the lungs following intranasal and intratracheal inoculation with SARS-CoV-2. In conclusion, the candidate plasmid DNA vaccine encoding the SARS-CoV-2 spike protein is immunogenic in different models and confers protection against lung infection in nonhuman primates. Further evaluation of this DNA vaccine candidate in clinical trials is warranted.

14.
Toxins (Basel) ; 13(4)2021 04 18.
Article in English | MEDLINE | ID: mdl-33919561

ABSTRACT

Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.


Subject(s)
Abrin/analysis , Abrus/chemistry , Antibodies, Monoclonal/immunology , Enzyme-Linked Immunosorbent Assay , Plant Lectins/analysis , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Abrin/immunology , Abrin/poisoning , Abrus/immunology , Antibody Specificity , Feces/chemistry , Humans , Limit of Detection , Plant Lectins/immunology , Reproducibility of Results , Suicide, Attempted
15.
Toxins (Basel) ; 13(4)2021 04 08.
Article in English | MEDLINE | ID: mdl-33917845

ABSTRACT

Clostridium perfringens enterotoxin (CPE) regularly causes food poisoning and antibiotic-associated diarrhea; therefore, reliable toxin detection is crucial. To this aim, we explored stationary and mobile strategies to detect CPE either exclusively by monoclonal antibodies (mAbs) or, alternatively, by toxin-enrichment via the cellular receptor of CPE, claudin-4, and mAb detection. Among the newly generated mAbs, we identified nine CPE-specific mAbs targeting five distinct epitopes, among them mAbs recognizing CPE bound to claudin-4 or neutralizing CPE activity in vitro. In surface plasmon resonance experiments, all mAbs and claudin-4 revealed excellent affinities towards CPE, ranging from 0.05 to 2.3 nM. Integrated into sandwich enzyme-linked immunosorbent assays (ELISAs), the most sensitive mAb/mAb and claudin-4/mAb combinations achieved similar detection limits of 0.3 pg/mL and 1.0 pg/mL, respectively, specifically detecting recombinant CPE from spiked feces and native CPE from 30 different C. perfringens culture supernatants. The implementation of mAb- and receptor-based ELISAs into a mobile detection platform enabled the fast detection of CPE, which will be helpful in clinical laboratories to diagnose diarrhea of assumed bacterial origin. In conclusion, we successfully employed an endogenous receptor and novel high affinity mAbs for highly sensitive and specific CPE-detection. These tools will be useful for both basic and applied research.


Subject(s)
Antibodies, Monoclonal , Claudin-4/metabolism , Clostridium Infections/diagnosis , Clostridium perfringens/metabolism , Enterotoxins/analysis , Enzyme-Linked Immunosorbent Assay , Foodborne Diseases/diagnosis , Animals , Antibody Affinity , Antibody Specificity , Automation, Laboratory , Claudin-4/genetics , Claudin-4/immunology , Clostridium Infections/microbiology , Clostridium perfringens/genetics , Clostridium perfringens/immunology , Enterotoxins/genetics , Enterotoxins/immunology , Enterotoxins/metabolism , Epitope Mapping , Epitopes , Feces , Foodborne Diseases/microbiology , Humans , Limit of Detection , Mice , Predictive Value of Tests , Protein Binding , Reproducibility of Results , Workflow
16.
Toxins (Basel) ; 13(2)2021 01 29.
Article in English | MEDLINE | ID: mdl-33573016

ABSTRACT

Ricin, a highly toxic protein from Ricinus communis, is considered a potential biowarfare agent. Despite the many data available, no specific treatment has yet been approved. Due to their ability to provide immediate protection, antibodies (Abs) are an approach of choice. However, their high specificity might compromise their capacity to protect against the different ricin isoforms (D and E) found in the different cultivars. In previous work, we have shown the neutralizing potential of different Abs (43RCA-G1 (anti ricin A-chain) and RB34 and RB37 (anti ricin B-chain)) against ricin D. In this study, we evaluated their protective capacity against both ricin isoforms. We show that: (i) RB34 and RB37 recognize exclusively ricin D, whereas 43RCA-G1 recognizes both isoforms, (ii) their neutralizing capacity in vitro varies depending on the cultivar, and (iii) there is a synergistic effect when combining RB34 and 43RCA-G1. This effect is also demonstrated in vivo in a mouse model of intranasal intoxication with ricin D/E (1:1), where approximately 60% and 40% of mice treated 0 and 6 h after intoxication, respectively, are protected. Our results highlight the importance of evaluating the effectiveness of the Abs against different ricin isoforms to identify the treatment with the broadest spectrum neutralizing effect.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antidotes/pharmacology , Poisoning/prevention & control , Ricin/antagonists & inhibitors , Ricinus/metabolism , Animals , Antibody Specificity , Antidotes/pharmacokinetics , Cell Survival/drug effects , Drug Therapy, Combination , Female , Humans , Jurkat Cells , Lethal Dose 50 , Mice, Inbred BALB C , Poisoning/immunology , Protein Isoforms , Ricin/immunology , Ricin/isolation & purification , Ricin/poisoning , Ricinus/growth & development
17.
Toxins (Basel) ; 13(1)2021 01 13.
Article in English | MEDLINE | ID: mdl-33450857

ABSTRACT

The toxin abrin found in the seeds of Abrus precatorius has attracted much attention regarding criminal and terroristic misuse over the past decade. Progress in analytical methods for a rapid and unambiguous identification of low abrin concentrations in complex matrices is essential. Here, we report on the development and evaluation of a MALDI-TOF mass spectrometry approach for the fast, sensitive and robust abrin isolectin identification, differentiation and quantification in complex food matrices. The method combines immunoaffinity-enrichment with specific abrin antibodies, accelerated trypsin digestion and the subsequent MALDI-TOF analysis of abrin peptides using labeled peptides for quantification purposes. Following the optimization of the workflow, common and isoform-specific peptides were detected resulting in a ~38% sequence coverage of abrin when testing ng-amounts of the toxin. The lower limit of detection was established at 40 ng/mL in milk and apple juice. Isotope-labeled versions of abundant peptides with high ionization efficiency were added. The quantitative evaluation demonstrated an assay variability at or below 22% with a linear range up to 800 ng/mL. MALDI-TOF mass spectrometry allows for a simple and fast (<5 min) analysis of abrin peptides, without a time-consuming peptide chromatographic separation, thus constituting a relevant alternative to liquid chromatography-tandem mass spectrometry.


Subject(s)
Abrin/analysis , Food Contamination/analysis , Immunoassay/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Toxins, Biological/analysis , Abrus , Isotope Labeling/methods , Plant Proteins/analysis , Seeds/chemistry , Sensitivity and Specificity , Tandem Mass Spectrometry
18.
PLoS Negl Trop Dis ; 14(10): e0008699, 2020 10.
Article in English | MEDLINE | ID: mdl-33095766

ABSTRACT

Surveillance of highly pathogenic viruses circulating in both human and animal populations is crucial to unveil endemic infections and potential zoonotic reservoirs. Monitoring the burden of disease by serological assay could be used as an early warning system for imminent outbreaks as an increased seroprevalance often precedes larger outbreaks. However, the multitude of highly pathogenic viruses necessitates the need to identify specific antibodies against several targets from both humans as well as from potential reservoir animals such as bats. In order to address this, we have developed a broadly reactive multiplex microsphere immunoassay (MMIA) for the detection of antibodies against several highly pathogenic viruses from both humans and animals. To this aim, nucleoproteins (NP) of Ebola virus (EBOV), Marburg virus (MARV) and nucleocapsid proteins (NP) of Crimean-Congo haemorrhagic fever virus, Rift Valley fever virus and Dobrava-Belgrade hantavirus were employed in a 5-plex assay for IgG detection. After optimisation, specific binding to each respective NP was shown by testing sera from humans and non-human primates with known infection status. The usefulness of our assay for serosurveillance was shown by determining the immune response against the NP antigens in a panel of 129 human serum samples collected in Guinea between 2011 and 2012 in comparison to a panel of 88 sera from the German blood bank. We found good agreement between our MMIA and commercial or in-house reference methods by ELISA or IIFT with statistically significant higher binding to both EBOV NP and MARV NP coupled microspheres in the Guinea panel. Finally, the MMIA was successfully adapted to detect antibodies from bats that had been inoculated with EBOV- and MARV- virus-like particles, highlighting the versatility of this technique and potentially enabling the monitoring of wildlife as well as human populations with this assay. We were thus able to develop and validate a sensitive and broadly reactive high-throughput serological assay which could be used as a screening tool to detect antibodies against several highly pathogenic viruses.


Subject(s)
Antibodies, Viral/blood , Immunoassay/methods , Microspheres , Nucleocapsid Proteins/immunology , Virus Diseases/veterinary , Animals , Chiroptera , Humans , Primates , Virus Diseases/diagnosis , Virus Diseases/virology
19.
Biologicals ; 67: 81-87, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32739117

ABSTRACT

The muscle-relaxing effects of the botulinum neurotoxin (BoNT) serotypes A and B are widely used in clinical and aesthetic medicine. The standard method for measuring the biological activity of pharmaceutical BoNT products is a mouse bioassay. In line with the European Directive 2010/63/EU, a replacement by an animal-free method would be desirable. Whereas the existing approved in vitro methods for BoNT activity measurements are product-specific and not freely available for all users, the "binding and cleavage" (BINACLE) assay could become a widely applicable alternative. This method quantifies active BoNT molecules based on their specific receptor-binding and proteolytic properties and can be applied to all BoNT products on the European market. Here we describe the results of a transferability study, in which identical BoNT samples were tested in the BINACLE assay in four laboratories. All participants successfully performed the method and observed clear dose-response relationships. Assay variability was within an acceptable range. These data indicate that the BoNT BINACLE assay is robust and can be straightforwardly transferred between laboratories. They thus provide an appropriate basis for future studies to further substantiate the suitability of the BINACLE assay for the potency determination of BoNT products.


Subject(s)
Biological Assay/methods , Botulinum Toxins/analysis , Botulinum Toxins/metabolism , Clinical Laboratory Techniques/methods , Animals , Biological Assay/trends , Humans , Mice , Protein Binding , Proteolysis , Reproducibility of Results
20.
Sci Rep ; 9(1): 5531, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940836

ABSTRACT

Botulinum neurotoxins (BoNTs) are the most potent toxins known and cause the life threatening disease botulism. Sensitive and broad detection is extremely challenging due to the toxins' high potency and molecular heterogeneity with several serotypes and more than 40 subtypes. The toxicity of BoNT is mediated by enzymatic cleavage of different synaptic proteins involved in neurotransmitter release at serotype-specific cleavage sites. Hence, active BoNTs can be monitored and distinguished in vitro by detecting their substrate cleavage products. In this work, we developed a comprehensive panel of monoclonal neoepitope antibodies (Neo-mAbs) highly specific for the newly generated N- and/or C-termini of the substrate cleavage products of BoNT serotypes A to F. The Neo-mAbs were implemented in a set of three enzymatic assays for the simultaneous detection of two BoNT serotypes each by monitoring substrate cleavage on colour-coded magnetic Luminex-beads. For the first time, all relevant serotypes could be detected in parallel by a routine in vitro activity assay in spiked serum and food samples yielding excellent detection limits in the range of the mouse bioassay or better (0.3-80 pg/mL). Therefore, this work represents a major step towards the replacement of the mouse bioassay for botulism diagnostics.


Subject(s)
Antibodies, Monoclonal/metabolism , Botulinum Toxins/analysis , Clostridium botulinum/isolation & purification , Animals , Botulinum Toxins/chemistry , Botulinum Toxins/immunology , Botulinum Toxins, Type A/analysis , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/immunology , Clostridium botulinum/immunology , Epitopes/immunology , Limit of Detection , Mice , Microarray Analysis , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL
...